

Precast Technology

PEPSCON Conference Hyderbad

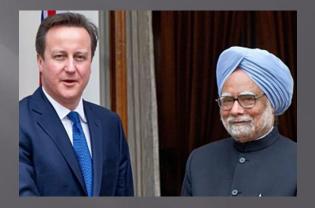
March 2013

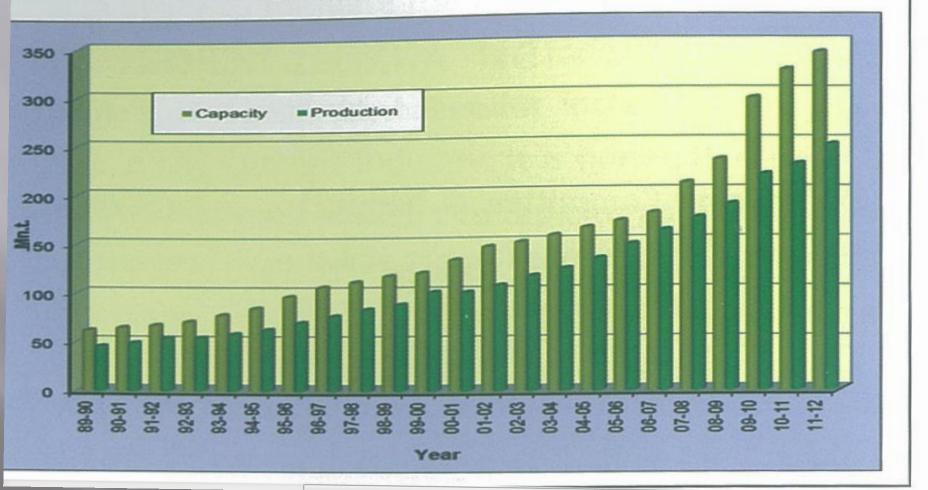
Pravin Sharode Marketing Manager Apollo Infratec Ltd Ahmedabad

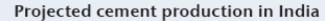
www.spiroll.co.uk

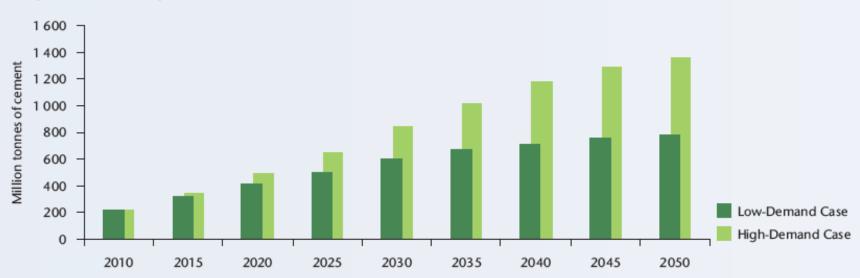
pecialists Supplier of Precast and Prestressing Technology, Equipment

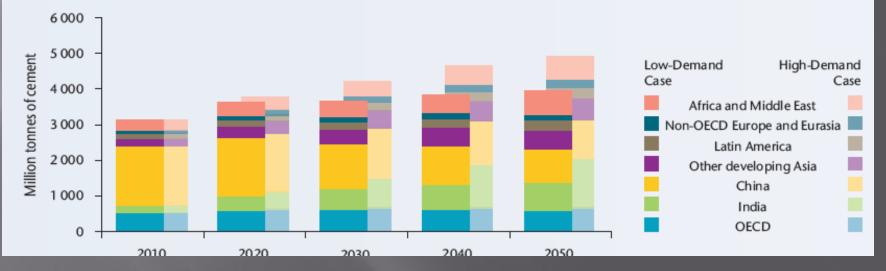
spirol)


Apollo Infratech Private Limited Rajpur 382 740, Gujarat, INDIA TEL:+91 2764 232 217, FAX:+91 2764 233 117, E-MAIL: sales@apolloinfratech.com www.apolloinfratech.com




UK-India Education and Research Initiative


Growth of Cement Industry


Source WBCSD 2/2013

This is the opportunity for you

Projected cement production globally

concrete slab extruder machines

Apollo's giant leap in providing solutions for Cost-effective Precast Projects in collaboration with its partner SPIROLL (UK)

During the 6th Vibrant Gujarat Global Investor's Summit held at Gandhinagar during 11-13 Jan'13, an MoU worth INR 5,000 Crore was signed between Apollo/Spiroll and Govt. of Gujarat for Affordable Mass Housing using New Precast Technology including design, manufacturing, erectioning and commissioning of building construction.

Hon'ble CM of Gujarat Sri Narendarabhai Modi, Mr. Mitul Patel, MD of Apollo Infratech and Mr. Stephen Carr, MD, Spiroll Precast Services (UK) are seen in the pictures taken during the signing of MoU.

Apollo Infratech Private Limited Rajpur 382740 (Gujarat) India TEL.:+91 2764 232217, FAX:+91 2764 233117, M.:+91 90991 44644 sales@apolloinfratech.com www.apolloinfratech.com

PRECAST FOR AFFORDABLE HOUSING

VIBRANT GUJARAT 12th January 2013

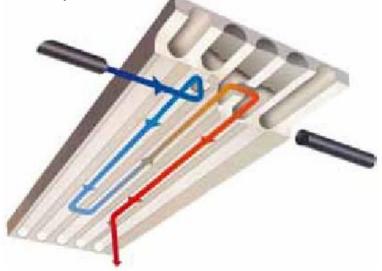
ECONOMIC ADVANTAGES OF PRECAST AND TECHNOLOGY

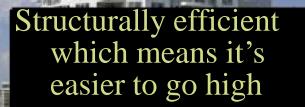
• Material Cost Savings

- 30% less concrete
 40% less steel
 up to 35% saving on total cost
- Long Spans
 - Lighter frame
 - Saving on foundations
 - Large open floor areas
- Fast Building Technique
 - 5000 m² per month
 - Immediate work deck
 - All weather construction

Thermally efficient, tailored to requirements...

The high density of precast concrete can act as a thermal sink to provide year-round comfort and reductions in energy use.


When insulation is combined into a precast concrete sandwich panel, the best of both worlds is achieved. The combination of high thermal mass and insulation results in significant energy-saving benefits in all climates.


...and thermally versatile

Precast concrete can easily be used to create heating and cooling systems that use up to 50% less energy.

Ducting pipe systems can be cast into panels and slabs, or alternatively, the hollow cores in precast floors can be excellent conduits for circulating hot or cold air.

The concrete protects the heating or cooling system within and slowly absorbs the heat or cool, then releases it into the building's interior, further improving the effectiveness of the system. And the embedded ducting means that room spaces can be used more effectively.

Quality in design and production means precast units are extremely structurally efficient.

Tall buildings can be built with precast because of its structural efficiency, which results in a lower storey height (reduced floor depth dimension for the same span as other materials) and so it becomes economically possible to add more floors.

Long clear spans

Precast's inherent strength provides the ability to create long clear spans without any additional structural support. This provides the designer maximum flexibility to create spacious interiors and column free offices and car-parks.

Hidden services ... ready to roll

Precast concrete can carry pre-installed services and fixtures, whether these are communications, electrical, plumbing or even windows! Services can be cast within a precast element and can include connection plates ready to receive heating and lighting fittings on site. This makes both construction and maintenance easy.

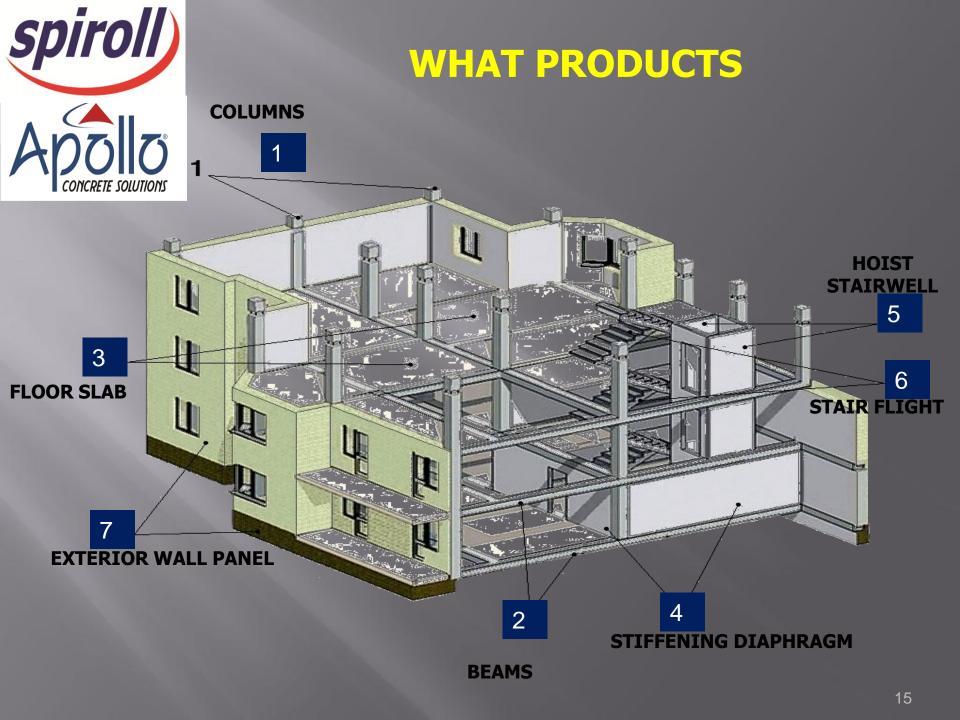
Wi-fi compatible

With homes and offices increasingly designed for information technology, it is good news that precast concrete buildings do not interfere with radio signals, local wi-fi or internet networks. This makes precast a technology friendly material for homes and places of work.

WHAT ARE SUITABLE BUILDINGS FOR PRECAST

- Shopping Malls
- Hotels
- Hospitals
- Housing
- Car Parks
- •Retaining walls

Considerations for a Precast Building


What is the first step to using precast? What buildings are suitable for precast? What products are appropriate for a building? What manufacturing facilities are required? What size factory is necessary? What codes are used in the design? What are the correct connection details? What are the production issues? How are the products handled?

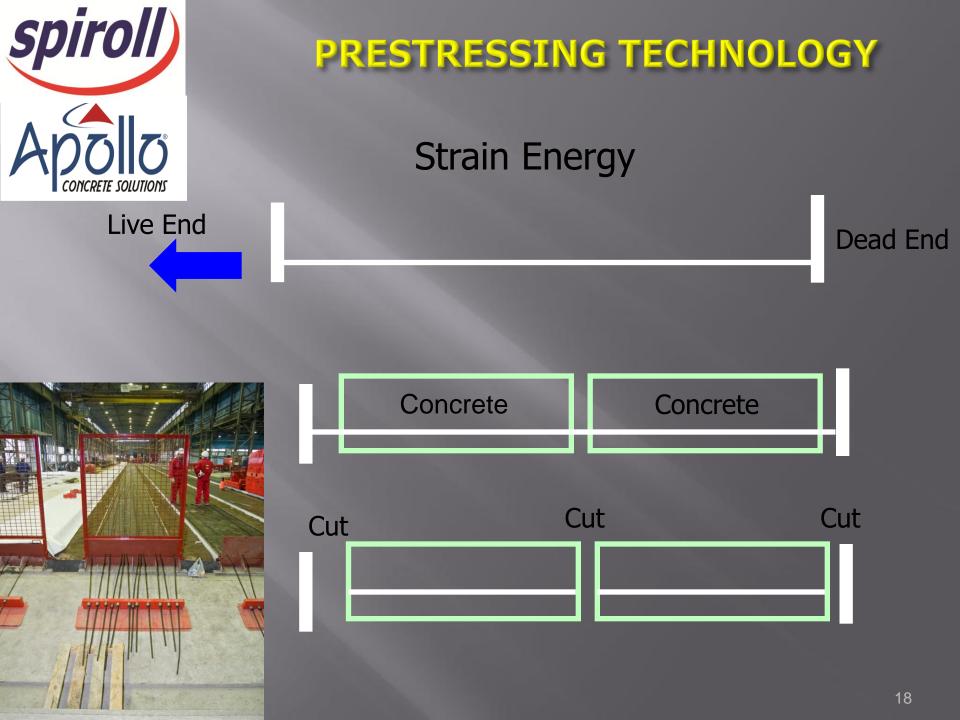
What fixing issues will we have on site?

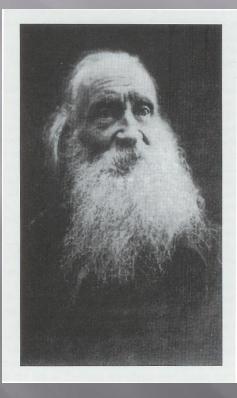
Subjects to be Covered

Stages of Project

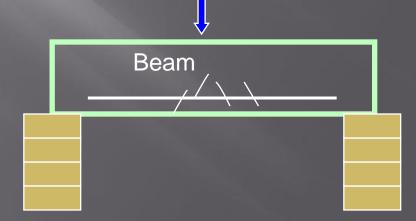
- **1** Components
- 2 Building Design
- **3** Precast and Hollowcore Detailing
- **4** Factory and Production
- **5 Site Requirements**
- **6** Transportation and Fixing

FOUR MAIN ELEMENTS





HOLLOWCORE restressing Technology to make strong light weight slabs


MOSTIMPORTANT

General Awareness Training Principal of Stressing

Hyatt 1816-1901 Tension in bottom Coef. Expansion Steel and Concrete Importance bond

General Awareness Training Loads Applied during Stressing

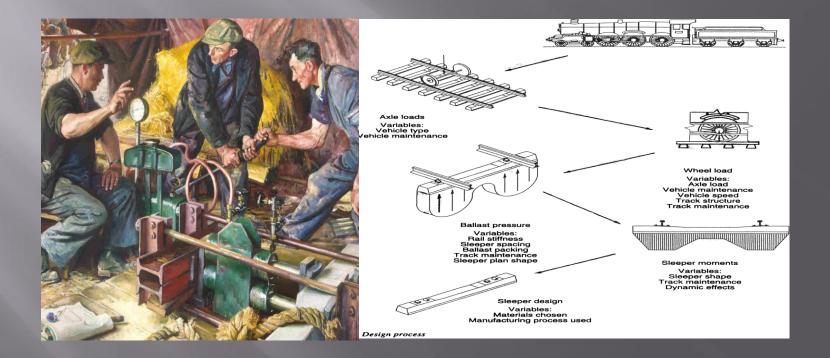
Strain Energy

Tendon Stressed to 70 to 75% of UTS If extended to 100% it will break

Typical UTS (Breaking Load) Standard Strand

5mm Wire32 kN9.3mm Strand92kN12.5mm Strand164kN15.2mm Strand232kN

Prepared by Spiroll Precast Services Ltd.



Test regime done on a rolling system to cover all products cast, 1 proof and 1 destructive tested per week.

General Stressing Awareness Training History

1943 Early Commercial Product - Railway Sleeper

General Stressing Awareness Training Prestressed Products

Bridge Beams Double Tees Wall Panels **Flooring Systems** Lintels (Headers) **Railway Sleepers Sign Gantries Stairs**

Site Issues First understand issues.

Precast Project Management

End-to-end project management

- Feasibility studies at the initial conception
- Develop construction scheme
- Review build ability
- Prepare method statements
- Prepare Risk/COSHH Assessments
- Prepare site layout and induction of site teams
- Training of installation teams

Precast Project Management

Additional end-to-end support for your project

- Training of Precast manufacture operatives
- Site Management support part time of full time
- Supply of site management/operatives
- Develop and provide lift plans for craneage

Project Costing

- 12 Storey Apartment, Surgut, Russia
- 220 mm Hollowcore
- Columns 400 x 400 mm
- Floor Height 3m

Nº	Description of element of construction	Precast concrete frame method 12 storey apartment,			In-situ method 12 storey apartment house,				
		Concrete		Reinforcement		Concrete		Reinforcement	
		total, m ³	m ³ / m ²	total, tones	kg/m ²	total, m ³	m³/ m²	total, tones	kg/m ²
4 5 6	Columns Beams Stiffening diaphragms Hollowcore slabs Balcony slabs Joint grouting Casting palce concrete	214 198 55 745 86 198 91	0,0253 0,0234 0,0099 0,0883 0,0101 0,0292 0,0273	43 26 7 38 11 28 30	5,11 3,11 0,001 4,527 1,278 3,346 3,534	214 325 55 1 121 86 	0,0253 0,0385 0,0099 0,1328 0,0101 	43 43 7 169 11 	5,11 5,11 0,001 20,02 1,278
	Total:	1 587	0,1862	183	17,372	1 941	0,2166	273	30,241

Bill of Quantities with In-Situ

Construction

Nº	Description	Measure	Quantity	Cost per unit, including VAT, INR	Total cost, including VAT, INR
1	Beams	m³	325	33472	INR 10,878,400.00
2	Columns	m ³	214	33472	INR 7,163,008.00
3	Hollowcore slabs	m²	7004	4480	INR 31,377,920.00
4	Stiffening diaphragms	m ³	53	33472	INR 1,774,016.00
5	Balcony slabs	m³	86	33472	INR 2,878,592.00
6	Reinforcement, frames, mesh	tones	262	37184	INR 9,742,208.00
7	Staircases	m ³	24	29888	INR 717,312.00
8	Embedded items	tones	5	89280	INR 446,400.00
9	Ventilation units:	items	234	166208	INR 38,892,672.00
10	Elevator hoistways:				
	Type 1	items	13	45056	INR 585,728.00
	Type 2	items	1	36096	INR 36,096.00
	Type 3	items	1	35904	INR 35,904.00
	Type 4	items	13	30016	INR 390,208.00
	Type 5	items	1	24064	INR 24,064.00
	Туре б	items	1	23936	INR 23,936.00
11	Other expenditures (inert				INR 5,581,376.00
	materials, board, slab), etc.				
12	Transport service 8%				INR 6,050,240.00
	Total price:				INR 116,598,080.00

Bill of Quantities with Precast

Construction

Ng	P Description	Measure	Quantity		Total cost including VAT, INR
1	Beams	m³	198	37440	7,413,120.00
2	Columns	m ³	214	20864	4,464,896.00
3	Hollowcore slabs	m²	6774	2240	15,173,760.00
4	Stiffening diaphradm	m³	55	22400	1,232,000.00
5	Balcony slabs	m³	86	26496	2,278,656.00
6	Cast-in-place concrete:				
	Concrete M - 400 B 30 type	m ³	91	6720	611,520.00
	Fine-aggregate concrete B – 30 type	m ³	198	6720	1,330,560.00
7	' Reinforcement, frames, mesh	tones	58	37184	2,156,672.00
8	Staircases	m³	24	29888	717,312.00
9	Embedded items	tones	5	89280	446,400.00
1	0 Ventilation units	item	234	17408	4,073,472.00
11	L Elevator hoistways:				
	Туре 1	item	13	45056	585,728.00
	Туре 2	item	1	36096	36,096.00
	Туре 3	item	1	35904	35,904.00
	Туре 4	item	13	30016	390,208.00
	Туре 5	item	1	24064	24,064.00
	Туре б	item	1	23936	23,936.00
12	2 Other expenditures (inert materials, boa	ard, slab), e	etc.		1,116,288.00
13	3 Transport service 8%				3,361,984.00
14	+ Contractor's service (frame assembling)) m²	8439	2240	18,903,360.00
	Total cost:				INR 64,375,936.00
	Cost per m ² of the frame				INR 7,628

Savings Using Precast

Insitu Cost116,598,080Precast Cost64,375,936Difference52,222,144Percent Saving45%

Building Design Review

Issues to be considered

Volumes/Repetition Cellular Walls vs Frame Buildings Codes Finishes Layout Loads Beam spans Timescale Cost

Precast Concrete - What can be Achieved

King Edwards Wharf in Birmingham UK 2008

Second Example of Precast and Hollowcore

University of West of England – Student Accommodation 2009

Precast Design

Facts and Figures - University of West England

Reference	Drawings (GA)	Drawings (Mould)	Drawings (RC)	Volume m3/(m2)	No. Off	Ratio Drawings/No. Off
Layout	52					
RC Beams		8	4		163	20:1
External Panels		65	11	5960	2829	43:1
Floors Slabs		80	35	9944 (49720)	5723	71:1
Internal walls		40	4	4590	2181	54:1
Stairs		10	5	695	556	55:1
Steelwork		13			1030	

BUILDING DESIGN

PLAY TO STRENGTHS PRECAST

Repetition

Mould Set-Up

No Units

Minimum Ratio 5:1

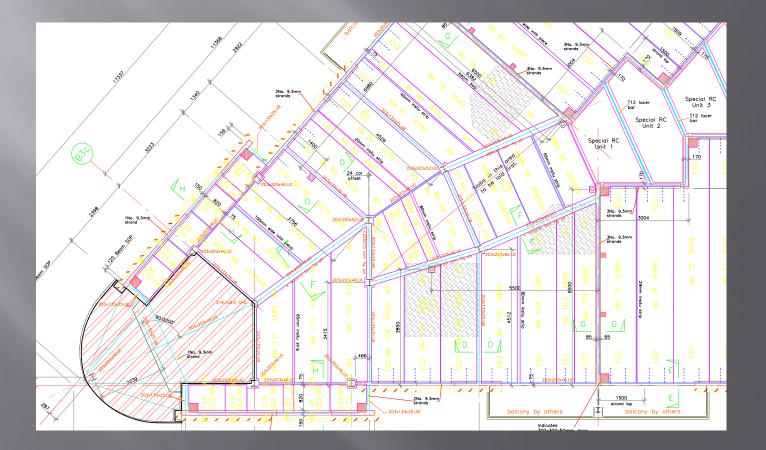
50,000 m2 Hollowcore 13 metre beam spans

BUILDING DESIGN CRITERIA

Key Issues from the drawings and the client a layout can be prepared

Look at line of the vertical loads? Is the building in a seismic area? What codes are to be applied What Insulation characteristics are required? How important is Noise Control? Sandwich or solid panels? Where is the nearest precast facility? What weight of product can be handled?

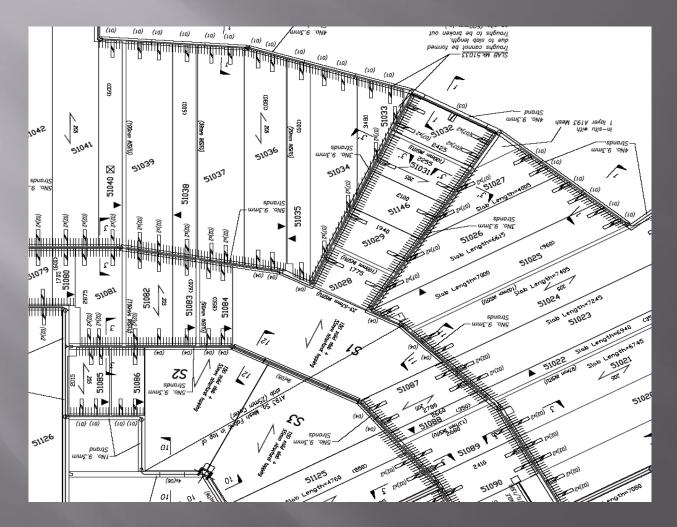
Most important, the connection details


Precast Hollowcore Layouts

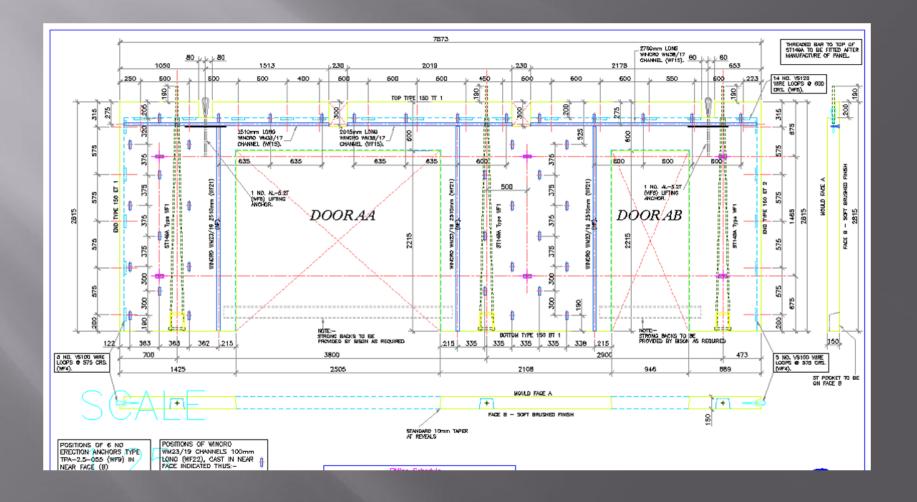
King Edwards Wharf Elevations

BLOCK B & C – NORTH ELEVATION TO CANAL

BUILDING DESIGN CRITERIA


Precast Design

Preliminary Hollowcore layout


Precast Concrete in Cellular Buildings

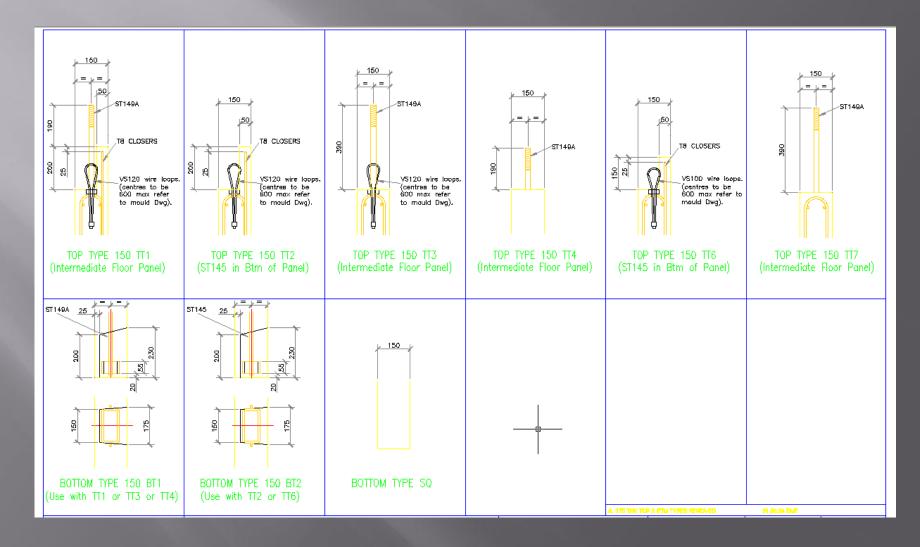
Detailed Layout and Design

CONNECTION DETAILS

Typical External Wall Detail

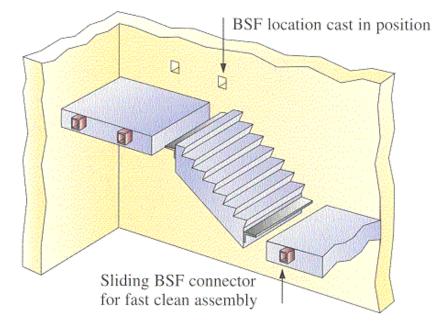
Typical Site Connection Details

Examples of Typical Connection Details Used on above projectss


all Connection ST Connector

External Wall Connection - Loops and vertical Bar

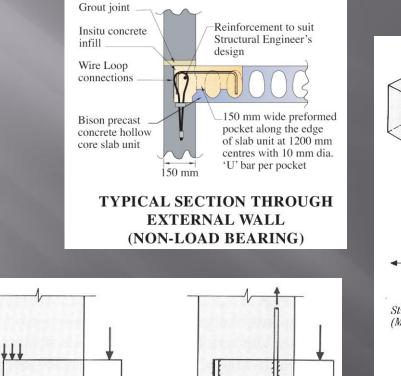
Precast Concrete in Cellular Buildings


Typical Connection Details Loop Connectors

Precast Concrete in CellularBuildingsTypical Connection DetailsRV

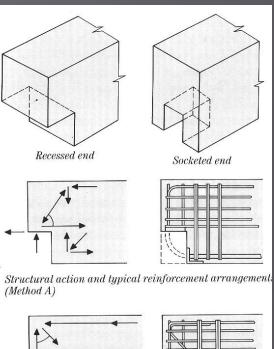
RVK Type Stair Connection

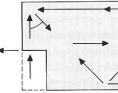
PRECAST CONCRETE CORES USING THE BSF CONNECTOR

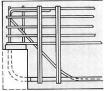


RVK 40 and RVK 100

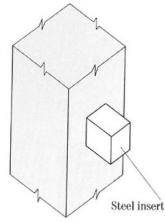
Design Precast

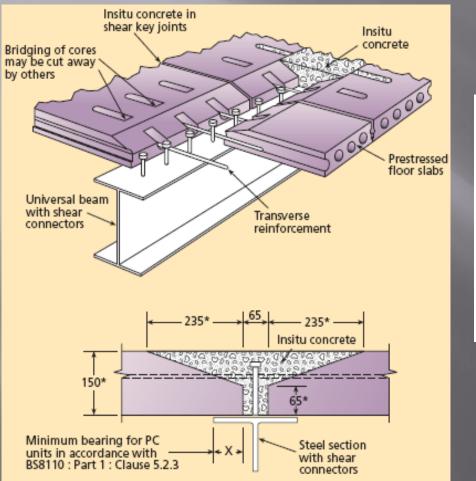

Typical Connection

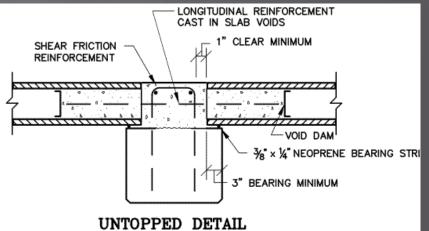

Details



Reactions taken by compression on concrete or on reinforcement or a combination of the two

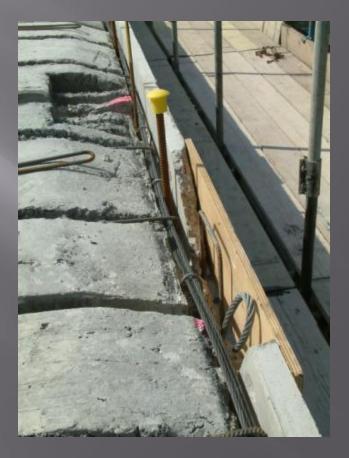

†††††





Structural action and typical reinforcement arrangement. (Method B)

Design Hollowcore Connection Details



Site Finishing Details for Hollowcore Typical Site Connection Details

FACTORY EFFICIENCY

MANUFACTURE OF PRECAST CONCRETE PRODUCTS

I HOLLOWCORE

II PRECAST PRODUCTS

FACTORY LAYOUT

EFFICIENT FACTORY LAYOUT

Scope of plant layout

- Volumes
- Degree Automation
- **Existing Facilities**
- Other Products
- Distribution Concrete
- Stripping Beds

FACTORY EFFICIENCY

LENGTH BED TYPE EXTRUDER CONCRETE DISTRIBUTION STRESSING SYSTEM TYPE SAW LIFTING AND HANDLING^{LOOK}

CASTING EFFICIENCY

spiroll

SLIP FPRMERS/EXTRUDERS SPIROLL EXTRUDER DESIGNED SPECIFICALLY FOR HIGH QUALITY HOLLOWCORE

BENEFITS OF DENSE WELL COMPACTED CONCRETE ARE HUGE

Low cement 330kg to 350kg

Low curing times

Strong product

Good bond

Good control camber

Goof soffit finishes

QUICK CHANGE WITH MODULES FOR DIFFERENT DEPTHS

spiroll)

the case

RECON

12

QUALITY CONTROL PROCEDURES

Check wire positions + - 5mm

Check quality, profiles and structural integrity

Check depths of units + - 6mm

Check timber alignment

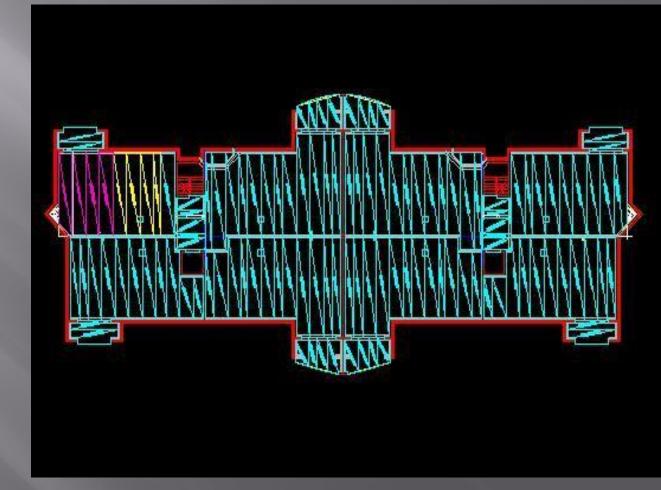
Production Precast Concrete Wall Panels Manufacture Panels

Production of Columns and Beams

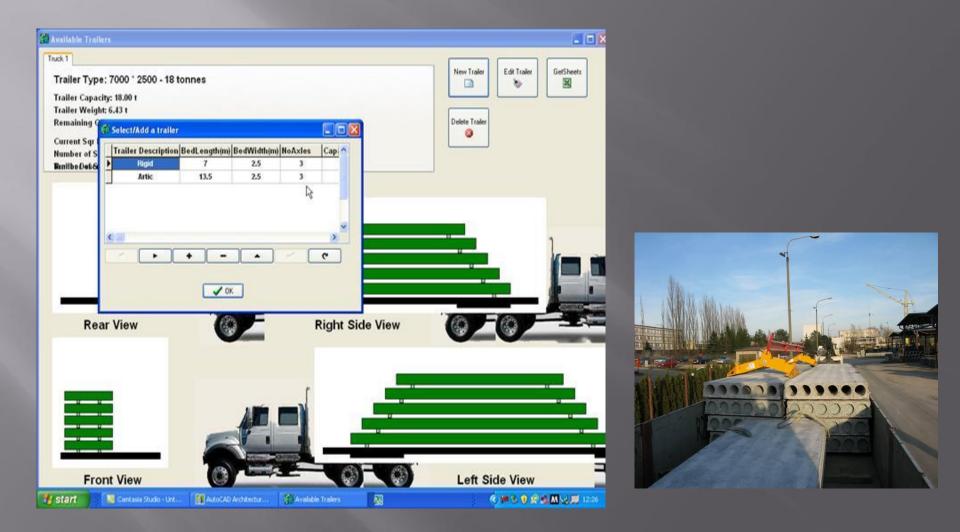
Precast Concrete in Cellular Buildings

Manufacture Stairs

Transportation and Site Fixing


Issues Associated with Site Work

Haulage Access Fixing Volumes Connection Details Safety


DESIGN AND LOGISTICS - SpirollCAD

Design

- **Bending Moment**
- Shear Capacity
- Project Schedules
- Production Planning
- Bed Utilisation
- Production Scheduling
- ·Labelling
- Stock Yard Control
- Loading Schedules

Site Fixing -- Haulage, Lifting and Handling

Site Production

Mr Islam Skills Promoters

Sarath City Capital

Site Fixing - Daily Fixing Volumes

Crane Dictates

Typical 15 lifts per day per crane

(i.e. 40 minutes per lift)

Site Fixing - Daily Fixing Volumes Hollowcore

Hollowcore

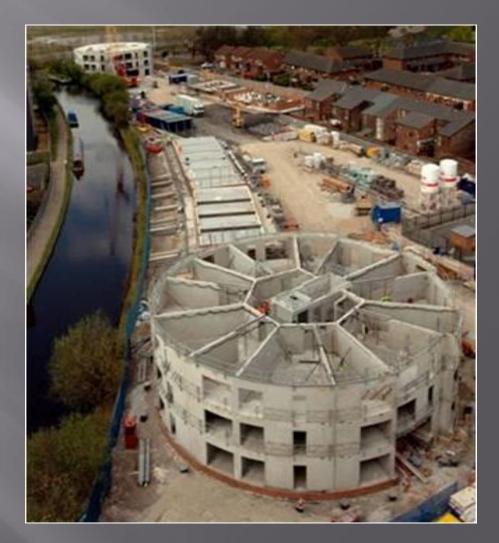
Hollowcore typically

250/400 m2 pr day per crane

Site Fixing - Daily Fixing Volumes Panels

Panels

Crane Dictates


Typical 12 to 15 lifts per day per cran (i.e. 40 minutes per lift)

Panels Max 10 tonne

Site Fixing - Safety

Intensive Activity Variety Trades Restricted Area

Well thought out Plan

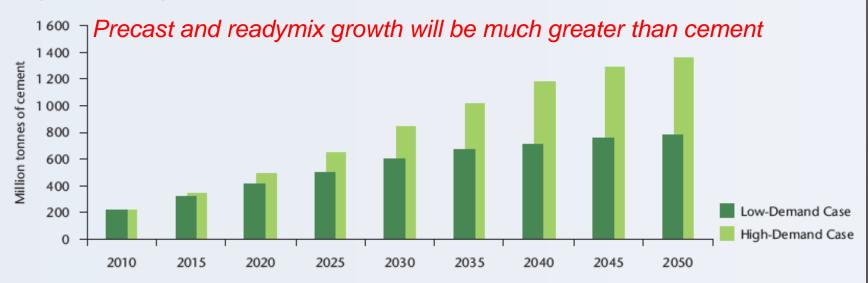
Site Fixing Precast Elements

Construction, Design and Management - Vital

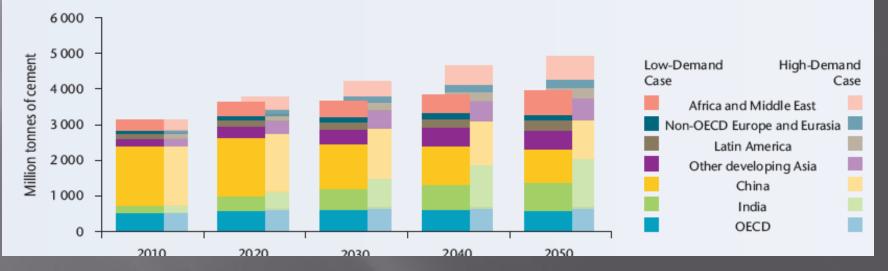
Training & certification
Design stage Consideration
General contractor's responsibilities
Installation companies role
Transportation of components
Safe use of cranes, fork lifts etc.
Access

SEQUENCE TAS

Product Range Product Volumes Land Available Factory Layout Equipment Required Project Partner Project Management Fixing Management


APOLLO /SPIROLL CONSULTING SUPPORT

DESIGN SUPPORT PROJECT MANAGEMENT TURNKEY OPERATION


Source WBCSD 2/2013

This is the opportunity for concrete

Projected cement production in India

Projected cement production globally

•the Indian precast concrete industry needs to develop Its own trade organisation

•working with the cement, ash and slag sectors is a must

•Contribution of associate members

•Now appears to be the right time to do it.....but how ?

Technology Roadmap Low-Carbon Technology for the Indian Cement Industry

SUMMARY

- 1. Precast Technology best solution for economic building of affordable housing
- 2. Prestressing Technology brings big benefits
- 3. Site Fixing is an integral part of the technology
- 4. Factory must be designed for efficiency
- 5. Project must consider at an early stage
- 6. Select the right equipment
- 7. Ensure staff are fully trained

APOLLO SPIROLL ARE IN INDIA TO SUPPORT THE PRECAST INDUSTRY ------ <u>www.spiroll.co.uk</u> -----

Consultancy Services

Stephen Carr Managing Director Mitual Patel MD Apollo Pravin Sharode Sales Manager Apollo

> Spiroll Precast Services Ltd. Kingsway Industrial Park Derby DE22 3FP United Kingdom

Mob: +44 (0)752 5987511 Tel: +44 (0)1332 365 131 Fax: +44 (0)1332 291 736

Email: enquiries@spiroll.co.uk Web: www.spiroll.co.uk